theorem bitr2 (a b c: wff): $ (a <-> b) -> (b <-> c) -> (c <-> a) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anl | (a <-> b) /\ (b <-> c) -> (a <-> b) |
|
2 | anr | (a <-> b) /\ (b <-> c) -> (b <-> c) |
|
3 | 1, 2 | bitr2d | (a <-> b) /\ (b <-> c) -> (c <-> a) |
4 | 3 | exp | (a <-> b) -> (b <-> c) -> (c <-> a) |