theorem zleorle (a b: nat): $ a <=Z b \/ b <=Z a $;
Step | Hyp | Ref | Expression |
1 |
|
oreq |
(zfst (a -Z b) = 0 <-> a <=Z b) -> (zsnd (a -Z b) = 0 <-> b <=Z a) -> (zfst (a -Z b) = 0 \/ zsnd (a -Z b) = 0 <-> a <=Z b \/ b <=Z a) |
2 |
|
bitr |
(zfst (a -Z b) = 0 <-> a -Z b <=Z 0) -> (a -Z b <=Z 0 <-> a <=Z b) -> (zfst (a -Z b) = 0 <-> a <=Z b) |
3 |
|
zfsteq0 |
zfst (a -Z b) = 0 <-> a -Z b <=Z 0 |
4 |
2, 3 |
ax_mp |
(a -Z b <=Z 0 <-> a <=Z b) -> (zfst (a -Z b) = 0 <-> a <=Z b) |
5 |
|
zlesub0 |
a -Z b <=Z 0 <-> a <=Z b |
6 |
4, 5 |
ax_mp |
zfst (a -Z b) = 0 <-> a <=Z b |
7 |
1, 6 |
ax_mp |
(zsnd (a -Z b) = 0 <-> b <=Z a) -> (zfst (a -Z b) = 0 \/ zsnd (a -Z b) = 0 <-> a <=Z b \/ b <=Z a) |
8 |
|
bitr |
(zsnd (a -Z b) = 0 <-> 0 <=Z a -Z b) -> (0 <=Z a -Z b <-> b <=Z a) -> (zsnd (a -Z b) = 0 <-> b <=Z a) |
9 |
|
zsndeq0 |
zsnd (a -Z b) = 0 <-> 0 <=Z a -Z b |
10 |
8, 9 |
ax_mp |
(0 <=Z a -Z b <-> b <=Z a) -> (zsnd (a -Z b) = 0 <-> b <=Z a) |
11 |
|
zle0sub |
0 <=Z a -Z b <-> b <=Z a |
12 |
10, 11 |
ax_mp |
zsnd (a -Z b) = 0 <-> b <=Z a |
13 |
7, 12 |
ax_mp |
zfst (a -Z b) = 0 \/ zsnd (a -Z b) = 0 <-> a <=Z b \/ b <=Z a |
14 |
|
zfstsnd0 |
zfst (a -Z b) = 0 \/ zsnd (a -Z b) = 0 |
15 |
13, 14 |
mpbi |
a <=Z b \/ b <=Z a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)