theorem zsndeq0 (a: nat): $ zsnd a = 0 <-> 0 <=Z a $;
Step | Hyp | Ref | Expression |
1 |
|
zle0b0 |
0 <=Z b0 (zfst a) |
2 |
|
znsub02 |
zfst a -ZN 0 = b0 (zfst a) |
3 |
|
zfstsnd |
zfst a -ZN zsnd a = a |
4 |
|
znsubeq2 |
zsnd a = 0 -> zfst a -ZN zsnd a = zfst a -ZN 0 |
5 |
3, 4 |
syl5eqr |
zsnd a = 0 -> a = zfst a -ZN 0 |
6 |
2, 5 |
syl6eq |
zsnd a = 0 -> a = b0 (zfst a) |
7 |
6 |
zleeq2d |
zsnd a = 0 -> (0 <=Z a <-> 0 <=Z b0 (zfst a)) |
8 |
1, 7 |
mpbiri |
zsnd a = 0 -> 0 <=Z a |
9 |
|
zsndb0 |
zsnd (b0 (a // 2)) = 0 |
10 |
|
zle02eq |
0 <=Z a <-> a = b0 (a // 2) |
11 |
|
zsndeq |
a = b0 (a // 2) -> zsnd a = zsnd (b0 (a // 2)) |
12 |
10, 11 |
sylbi |
0 <=Z a -> zsnd a = zsnd (b0 (a // 2)) |
13 |
9, 12 |
syl6eq |
0 <=Z a -> zsnd a = 0 |
14 |
8, 13 |
ibii |
zsnd a = 0 <-> 0 <=Z a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)