Theorem zfsteq0 | index | src |

theorem zfsteq0 (a: nat): $ zfst a = 0 <-> a <=Z 0 $;
StepHypRefExpression
1 bitr3
(zsnd (-uZ a) = 0 <-> zfst a = 0) -> (zsnd (-uZ a) = 0 <-> a <=Z 0) -> (zfst a = 0 <-> a <=Z 0)
2 eqeq1
zsnd (-uZ a) = zfst a -> (zsnd (-uZ a) = 0 <-> zfst a = 0)
3 zsndneg
zsnd (-uZ a) = zfst a
4 2, 3 ax_mp
zsnd (-uZ a) = 0 <-> zfst a = 0
5 1, 4 ax_mp
(zsnd (-uZ a) = 0 <-> a <=Z 0) -> (zfst a = 0 <-> a <=Z 0)
6 bitr
(zsnd (-uZ a) = 0 <-> 0 <=Z -uZ a) -> (0 <=Z -uZ a <-> a <=Z 0) -> (zsnd (-uZ a) = 0 <-> a <=Z 0)
7 zsndeq0
zsnd (-uZ a) = 0 <-> 0 <=Z -uZ a
8 6, 7 ax_mp
(0 <=Z -uZ a <-> a <=Z 0) -> (zsnd (-uZ a) = 0 <-> a <=Z 0)
9 zle0neg
0 <=Z -uZ a <-> a <=Z 0
10 8, 9 ax_mp
zsnd (-uZ a) = 0 <-> a <=Z 0
11 5, 10 ax_mp
zfst a = 0 <-> a <=Z 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)