theorem zlesub0 (a b: nat): $ a -Z b <=Z 0 <-> a <=Z b $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | noteq | (0 <Z a -Z b <-> b <Z a) -> (~0 <Z a -Z b <-> ~b <Z a) | 
        
          | 2 | 1 | conv zle | (0 <Z a -Z b <-> b <Z a) -> (a -Z b <=Z 0 <-> a <=Z b) | 
        
          | 3 |  | zlt0sub | 0 <Z a -Z b <-> b <Z a | 
        
          | 4 | 2, 3 | ax_mp | a -Z b <=Z 0 <-> a <=Z b | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)