Theorem zlesub0 | index | src |

theorem zlesub0 (a b: nat): $ a -Z b <=Z 0 <-> a <=Z b $;
StepHypRefExpression
1 noteq
(0 <Z a -Z b <-> b <Z a) -> (~0 <Z a -Z b <-> ~b <Z a)
2 1 conv zle
(0 <Z a -Z b <-> b <Z a) -> (a -Z b <=Z 0 <-> a <=Z b)
3 zlt0sub
0 <Z a -Z b <-> b <Z a
4 2, 3 ax_mp
a -Z b <=Z 0 <-> a <=Z b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)