theorem zlt0znsub (a b: nat): $ 0 b < a $;
Step | Hyp | Ref | Expression |
1 |
|
bitr3 |
(0 <Z b0 a -Z b0 b <-> 0 <Z a -ZN b) -> (0 <Z b0 a -Z b0 b <-> b < a) -> (0 <Z a -ZN b <-> b < a) |
2 |
|
zlteq2 |
b0 a -Z b0 b = a -ZN b -> (0 <Z b0 a -Z b0 b <-> 0 <Z a -ZN b) |
3 |
|
zsubb0 |
b0 a -Z b0 b = a -ZN b |
4 |
2, 3 |
ax_mp |
0 <Z b0 a -Z b0 b <-> 0 <Z a -ZN b |
5 |
1, 4 |
ax_mp |
(0 <Z b0 a -Z b0 b <-> b < a) -> (0 <Z a -ZN b <-> b < a) |
6 |
|
bitr |
(0 <Z b0 a -Z b0 b <-> b0 b <Z b0 a) -> (b0 b <Z b0 a <-> b < a) -> (0 <Z b0 a -Z b0 b <-> b < a) |
7 |
|
zlt0sub |
0 <Z b0 a -Z b0 b <-> b0 b <Z b0 a |
8 |
6, 7 |
ax_mp |
(b0 b <Z b0 a <-> b < a) -> (0 <Z b0 a -Z b0 b <-> b < a) |
9 |
|
zltb0 |
b0 b <Z b0 a <-> b < a |
10 |
8, 9 |
ax_mp |
0 <Z b0 a -Z b0 b <-> b < a |
11 |
5, 10 |
ax_mp |
0 <Z a -ZN b <-> b < a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)