Theorem zltznsub0 | index | src |

theorem zltznsub0 (a b: nat): $ a -ZN b  a < b $;
StepHypRefExpression
1 bitr3
(b0 a -Z b0 b <Z 0 <-> a -ZN b <Z 0) -> (b0 a -Z b0 b <Z 0 <-> a < b) -> (a -ZN b <Z 0 <-> a < b)
2 zlteq1
b0 a -Z b0 b = a -ZN b -> (b0 a -Z b0 b <Z 0 <-> a -ZN b <Z 0)
3 zsubb0
b0 a -Z b0 b = a -ZN b
4 2, 3 ax_mp
b0 a -Z b0 b <Z 0 <-> a -ZN b <Z 0
5 1, 4 ax_mp
(b0 a -Z b0 b <Z 0 <-> a < b) -> (a -ZN b <Z 0 <-> a < b)
6 bitr
(b0 a -Z b0 b <Z 0 <-> b0 a <Z b0 b) -> (b0 a <Z b0 b <-> a < b) -> (b0 a -Z b0 b <Z 0 <-> a < b)
7 zltsub0
b0 a -Z b0 b <Z 0 <-> b0 a <Z b0 b
8 6, 7 ax_mp
(b0 a <Z b0 b <-> a < b) -> (b0 a -Z b0 b <Z 0 <-> a < b)
9 zltb0
b0 a <Z b0 b <-> a < b
10 8, 9 ax_mp
b0 a -Z b0 b <Z 0 <-> a < b
11 5, 10 ax_mp
a -ZN b <Z 0 <-> a < b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)