theorem zltb0 (a b: nat): $ b0 a a < b $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(b0 a <Z b0 b <-> odd (a -ZN b)) -> (odd (a -ZN b) <-> a < b) -> (b0 a <Z b0 b <-> a < b) |
2 |
|
oddeq |
b0 a -Z b0 b = a -ZN b -> (odd (b0 a -Z b0 b) <-> odd (a -ZN b)) |
3 |
2 |
conv zlt |
b0 a -Z b0 b = a -ZN b -> (b0 a <Z b0 b <-> odd (a -ZN b)) |
4 |
|
zsubb0 |
b0 a -Z b0 b = a -ZN b |
5 |
3, 4 |
ax_mp |
b0 a <Z b0 b <-> odd (a -ZN b) |
6 |
1, 5 |
ax_mp |
(odd (a -ZN b) <-> a < b) -> (b0 a <Z b0 b <-> a < b) |
7 |
|
znsubodd |
odd (a -ZN b) <-> a < b |
8 |
6, 7 |
ax_mp |
b0 a <Z b0 b <-> a < b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)