Step | Hyp | Ref | Expression |
1 |
|
eqtr3 |
zfst (b0 m) -ZN zsnd (b0 m) -Z b0 n = b0 m -Z b0 n -> zfst (b0 m) -ZN zsnd (b0 m) -Z b0 n = m -ZN n -> b0 m -Z b0 n = m -ZN n |
2 |
|
zsubeq1 |
zfst (b0 m) -ZN zsnd (b0 m) = b0 m -> zfst (b0 m) -ZN zsnd (b0 m) -Z b0 n = b0 m -Z b0 n |
3 |
|
zfstsnd |
zfst (b0 m) -ZN zsnd (b0 m) = b0 m |
4 |
2, 3 |
ax_mp |
zfst (b0 m) -ZN zsnd (b0 m) -Z b0 n = b0 m -Z b0 n |
5 |
1, 4 |
ax_mp |
zfst (b0 m) -ZN zsnd (b0 m) -Z b0 n = m -ZN n -> b0 m -Z b0 n = m -ZN n |
6 |
|
eqtr |
zfst (b0 m) -ZN zsnd (b0 m) -Z b0 n = zfst (b0 m) + zsnd (b0 n) -ZN (zsnd (b0 m) + zfst (b0 n)) ->
zfst (b0 m) + zsnd (b0 n) -ZN (zsnd (b0 m) + zfst (b0 n)) = m -ZN n ->
zfst (b0 m) -ZN zsnd (b0 m) -Z b0 n = m -ZN n |
7 |
|
zaddzn |
zfst (b0 m) -ZN zsnd (b0 m) +Z (zsnd (b0 n) -ZN zfst (b0 n)) = zfst (b0 m) + zsnd (b0 n) -ZN (zsnd (b0 m) + zfst (b0 n)) |
8 |
7 |
conv zneg, zsub |
zfst (b0 m) -ZN zsnd (b0 m) -Z b0 n = zfst (b0 m) + zsnd (b0 n) -ZN (zsnd (b0 m) + zfst (b0 n)) |
9 |
6, 8 |
ax_mp |
zfst (b0 m) + zsnd (b0 n) -ZN (zsnd (b0 m) + zfst (b0 n)) = m -ZN n -> zfst (b0 m) -ZN zsnd (b0 m) -Z b0 n = m -ZN n |
10 |
|
znsubeq |
zfst (b0 m) + zsnd (b0 n) = m -> zsnd (b0 m) + zfst (b0 n) = n -> zfst (b0 m) + zsnd (b0 n) -ZN (zsnd (b0 m) + zfst (b0 n)) = m -ZN n |
11 |
|
eqtr |
zfst (b0 m) + zsnd (b0 n) = m + 0 -> m + 0 = m -> zfst (b0 m) + zsnd (b0 n) = m |
12 |
|
addeq |
zfst (b0 m) = m -> zsnd (b0 n) = 0 -> zfst (b0 m) + zsnd (b0 n) = m + 0 |
13 |
|
zfstb0 |
zfst (b0 m) = m |
14 |
12, 13 |
ax_mp |
zsnd (b0 n) = 0 -> zfst (b0 m) + zsnd (b0 n) = m + 0 |
15 |
|
zsndb0 |
zsnd (b0 n) = 0 |
16 |
14, 15 |
ax_mp |
zfst (b0 m) + zsnd (b0 n) = m + 0 |
17 |
11, 16 |
ax_mp |
m + 0 = m -> zfst (b0 m) + zsnd (b0 n) = m |
18 |
|
add0 |
m + 0 = m |
19 |
17, 18 |
ax_mp |
zfst (b0 m) + zsnd (b0 n) = m |
20 |
10, 19 |
ax_mp |
zsnd (b0 m) + zfst (b0 n) = n -> zfst (b0 m) + zsnd (b0 n) -ZN (zsnd (b0 m) + zfst (b0 n)) = m -ZN n |
21 |
|
eqtr |
zsnd (b0 m) + zfst (b0 n) = 0 + n -> 0 + n = n -> zsnd (b0 m) + zfst (b0 n) = n |
22 |
|
addeq |
zsnd (b0 m) = 0 -> zfst (b0 n) = n -> zsnd (b0 m) + zfst (b0 n) = 0 + n |
23 |
|
zsndb0 |
zsnd (b0 m) = 0 |
24 |
22, 23 |
ax_mp |
zfst (b0 n) = n -> zsnd (b0 m) + zfst (b0 n) = 0 + n |
25 |
|
zfstb0 |
zfst (b0 n) = n |
26 |
24, 25 |
ax_mp |
zsnd (b0 m) + zfst (b0 n) = 0 + n |
27 |
21, 26 |
ax_mp |
0 + n = n -> zsnd (b0 m) + zfst (b0 n) = n |
28 |
|
add01 |
0 + n = n |
29 |
27, 28 |
ax_mp |
zsnd (b0 m) + zfst (b0 n) = n |
30 |
20, 29 |
ax_mp |
zfst (b0 m) + zsnd (b0 n) -ZN (zsnd (b0 m) + zfst (b0 n)) = m -ZN n |
31 |
9, 30 |
ax_mp |
zfst (b0 m) -ZN zsnd (b0 m) -Z b0 n = m -ZN n |
32 |
5, 31 |
ax_mp |
b0 m -Z b0 n = m -ZN n |