theorem zsubeq1 (_m1 _m2 n: nat): $ _m1 = _m2 -> _m1 -Z n = _m2 -Z n $;
Step | Hyp | Ref | Expression |
1 |
|
id |
_m1 = _m2 -> _m1 = _m2 |
2 |
1 |
zsubeq1d |
_m1 = _m2 -> _m1 -Z n = _m2 -Z n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)