Theorem zleb0 | index | src |

theorem zleb0 (a b: nat): $ b0 a <=Z b0 b <-> a <= b $;
StepHypRefExpression
1 bitr4
(b0 a <=Z b0 b <-> ~b < a) -> (a <= b <-> ~b < a) -> (b0 a <=Z b0 b <-> a <= b)
2 noteq
(b0 b <Z b0 a <-> b < a) -> (~b0 b <Z b0 a <-> ~b < a)
3 2 conv zle
(b0 b <Z b0 a <-> b < a) -> (b0 a <=Z b0 b <-> ~b < a)
4 zltb0
b0 b <Z b0 a <-> b < a
5 3, 4 ax_mp
b0 a <=Z b0 b <-> ~b < a
6 1, 5 ax_mp
(a <= b <-> ~b < a) -> (b0 a <=Z b0 b <-> a <= b)
7 lenlt
a <= b <-> ~b < a
8 6, 7 ax_mp
b0 a <=Z b0 b <-> a <= b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)