Theorem zltadd1 | index | src |

theorem zltadd1 (a b c: nat): $ a  a +Z c 
    
StepHypRefExpression
1 oddeq
a -Z b = a +Z c -Z (b +Z c) -> (odd (a -Z b) <-> odd (a +Z c -Z (b +Z c)))
2 1 conv zlt
a -Z b = a +Z c -Z (b +Z c) -> (a <Z b <-> a +Z c <Z b +Z c)
3 eqcom
a +Z c -Z (b +Z c) = a -Z b -> a -Z b = a +Z c -Z (b +Z c)
4 zpnpcan1
a +Z c -Z (b +Z c) = a -Z b
5 3, 4 ax_mp
a -Z b = a +Z c -Z (b +Z c)
6 2, 5 ax_mp
a <Z b <-> a +Z c <Z b +Z c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)