theorem zltadd2 (a b c: nat): $ b a +Z b
Step | Hyp | Ref | Expression |
1 |
|
oddeq |
b -Z c = a +Z b -Z (a +Z c) -> (odd (b -Z c) <-> odd (a +Z b -Z (a +Z c))) |
2 |
1 |
conv zlt |
b -Z c = a +Z b -Z (a +Z c) -> (b <Z c <-> a +Z b <Z a +Z c) |
3 |
|
eqcom |
a +Z b -Z (a +Z c) = b -Z c -> b -Z c = a +Z b -Z (a +Z c) |
4 |
|
zpnpcan2 |
a +Z b -Z (a +Z c) = b -Z c |
5 |
3, 4 |
ax_mp |
b -Z c = a +Z b -Z (a +Z c) |
6 |
2, 5 |
ax_mp |
b <Z c <-> a +Z b <Z a +Z c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)