theorem zpnpcan1 (a b c: nat): $ a +Z c -Z (b +Z c) = a -Z b $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | eqtr | a +Z c -Z (b +Z c) = c +Z a -Z (c +Z b) -> c +Z a -Z (c +Z b) = a -Z b -> a +Z c -Z (b +Z c) = a -Z b | 
        
          | 2 |  | zsubeq | a +Z c = c +Z a -> b +Z c = c +Z b -> a +Z c -Z (b +Z c) = c +Z a -Z (c +Z b) | 
        
          | 3 |  | zaddcom | a +Z c = c +Z a | 
        
          | 4 | 2, 3 | ax_mp | b +Z c = c +Z b -> a +Z c -Z (b +Z c) = c +Z a -Z (c +Z b) | 
        
          | 5 |  | zaddcom | b +Z c = c +Z b | 
        
          | 6 | 4, 5 | ax_mp | a +Z c -Z (b +Z c) = c +Z a -Z (c +Z b) | 
        
          | 7 | 1, 6 | ax_mp | c +Z a -Z (c +Z b) = a -Z b -> a +Z c -Z (b +Z c) = a -Z b | 
        
          | 8 |  | zpnpcan2 | c +Z a -Z (c +Z b) = a -Z b | 
        
          | 9 | 7, 8 | ax_mp | a +Z c -Z (b +Z c) = a -Z b | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)