Theorem zpnpcan1 | index | src |

theorem zpnpcan1 (a b c: nat): $ a +Z c -Z (b +Z c) = a -Z b $;
StepHypRefExpression
1 eqtr
a +Z c -Z (b +Z c) = c +Z a -Z (c +Z b) -> c +Z a -Z (c +Z b) = a -Z b -> a +Z c -Z (b +Z c) = a -Z b
2 zsubeq
a +Z c = c +Z a -> b +Z c = c +Z b -> a +Z c -Z (b +Z c) = c +Z a -Z (c +Z b)
3 zaddcom
a +Z c = c +Z a
4 2, 3 ax_mp
b +Z c = c +Z b -> a +Z c -Z (b +Z c) = c +Z a -Z (c +Z b)
5 zaddcom
b +Z c = c +Z b
6 4, 5 ax_mp
a +Z c -Z (b +Z c) = c +Z a -Z (c +Z b)
7 1, 6 ax_mp
c +Z a -Z (c +Z b) = a -Z b -> a +Z c -Z (b +Z c) = a -Z b
8 zpnpcan2
c +Z a -Z (c +Z b) = a -Z b
9 7, 8 ax_mp
a +Z c -Z (b +Z c) = a -Z b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)