theorem zaddcom (a b: nat): $ a +Z b = b +Z a $;
Step | Hyp | Ref | Expression |
1 |
|
znsubeq |
zfst a + zfst b = zfst b + zfst a -> zsnd a + zsnd b = zsnd b + zsnd a -> zfst a + zfst b -ZN (zsnd a + zsnd b) = zfst b + zfst a -ZN (zsnd b + zsnd a) |
2 |
1 |
conv zadd |
zfst a + zfst b = zfst b + zfst a -> zsnd a + zsnd b = zsnd b + zsnd a -> a +Z b = b +Z a |
3 |
|
addcom |
zfst a + zfst b = zfst b + zfst a |
4 |
2, 3 |
ax_mp |
zsnd a + zsnd b = zsnd b + zsnd a -> a +Z b = b +Z a |
5 |
|
addcom |
zsnd a + zsnd b = zsnd b + zsnd a |
6 |
4, 5 |
ax_mp |
a +Z b = b +Z a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
peano5,
addeq,
add0,
addS)