theorem zaddb0 (m n: nat): $ b0 m +Z b0 n = b0 (m + n) $;
Step | Hyp | Ref | Expression |
1 |
|
eqtr |
b0 m +Z b0 n = m + n -ZN 0 -> m + n -ZN 0 = b0 (m + n) -> b0 m +Z b0 n = b0 (m + n) |
2 |
|
znsubeq |
zfst (b0 m) + zfst (b0 n) = m + n -> zsnd (b0 m) + zsnd (b0 n) = 0 -> zfst (b0 m) + zfst (b0 n) -ZN (zsnd (b0 m) + zsnd (b0 n)) = m + n -ZN 0 |
3 |
2 |
conv zadd |
zfst (b0 m) + zfst (b0 n) = m + n -> zsnd (b0 m) + zsnd (b0 n) = 0 -> b0 m +Z b0 n = m + n -ZN 0 |
4 |
|
addeq |
zfst (b0 m) = m -> zfst (b0 n) = n -> zfst (b0 m) + zfst (b0 n) = m + n |
5 |
|
zfstb0 |
zfst (b0 m) = m |
6 |
4, 5 |
ax_mp |
zfst (b0 n) = n -> zfst (b0 m) + zfst (b0 n) = m + n |
7 |
|
zfstb0 |
zfst (b0 n) = n |
8 |
6, 7 |
ax_mp |
zfst (b0 m) + zfst (b0 n) = m + n |
9 |
3, 8 |
ax_mp |
zsnd (b0 m) + zsnd (b0 n) = 0 -> b0 m +Z b0 n = m + n -ZN 0 |
10 |
|
eqtr |
zsnd (b0 m) + zsnd (b0 n) = 0 + 0 -> 0 + 0 = 0 -> zsnd (b0 m) + zsnd (b0 n) = 0 |
11 |
|
addeq |
zsnd (b0 m) = 0 -> zsnd (b0 n) = 0 -> zsnd (b0 m) + zsnd (b0 n) = 0 + 0 |
12 |
|
zsndb0 |
zsnd (b0 m) = 0 |
13 |
11, 12 |
ax_mp |
zsnd (b0 n) = 0 -> zsnd (b0 m) + zsnd (b0 n) = 0 + 0 |
14 |
|
zsndb0 |
zsnd (b0 n) = 0 |
15 |
13, 14 |
ax_mp |
zsnd (b0 m) + zsnd (b0 n) = 0 + 0 |
16 |
10, 15 |
ax_mp |
0 + 0 = 0 -> zsnd (b0 m) + zsnd (b0 n) = 0 |
17 |
|
add0 |
0 + 0 = 0 |
18 |
16, 17 |
ax_mp |
zsnd (b0 m) + zsnd (b0 n) = 0 |
19 |
9, 18 |
ax_mp |
b0 m +Z b0 n = m + n -ZN 0 |
20 |
1, 19 |
ax_mp |
m + n -ZN 0 = b0 (m + n) -> b0 m +Z b0 n = b0 (m + n) |
21 |
|
znsub02 |
m + n -ZN 0 = b0 (m + n) |
22 |
20, 21 |
ax_mp |
b0 m +Z b0 n = b0 (m + n) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)