theorem znegsub (a b: nat): $ -uZ (a -Z b) = b -Z a $;
Step | Hyp | Ref | Expression |
1 |
|
eqtr |
-uZ (a -Z b) = -uZ a -Z -uZ b -> -uZ a -Z -uZ b = b -Z a -> -uZ (a -Z b) = b -Z a |
2 |
|
znegadd2 |
-uZ (a +Z -uZ b) = -uZ a -Z -uZ b |
3 |
2 |
conv zsub |
-uZ (a -Z b) = -uZ a -Z -uZ b |
4 |
1, 3 |
ax_mp |
-uZ a -Z -uZ b = b -Z a -> -uZ (a -Z b) = b -Z a |
5 |
|
eqtr |
-uZ a -Z -uZ b = -uZ -uZ b +Z -uZ a -> -uZ -uZ b +Z -uZ a = b -Z a -> -uZ a -Z -uZ b = b -Z a |
6 |
|
zaddcom |
-uZ a +Z -uZ -uZ b = -uZ -uZ b +Z -uZ a |
7 |
6 |
conv zsub |
-uZ a -Z -uZ b = -uZ -uZ b +Z -uZ a |
8 |
5, 7 |
ax_mp |
-uZ -uZ b +Z -uZ a = b -Z a -> -uZ a -Z -uZ b = b -Z a |
9 |
|
zaddeq1 |
-uZ -uZ b = b -> -uZ -uZ b +Z -uZ a = b +Z -uZ a |
10 |
9 |
conv zsub |
-uZ -uZ b = b -> -uZ -uZ b +Z -uZ a = b -Z a |
11 |
|
znegneg |
-uZ -uZ b = b |
12 |
10, 11 |
ax_mp |
-uZ -uZ b +Z -uZ a = b -Z a |
13 |
8, 12 |
ax_mp |
-uZ a -Z -uZ b = b -Z a |
14 |
4, 13 |
ax_mp |
-uZ (a -Z b) = b -Z a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)