Theorem znegsub | index | src |

theorem znegsub (a b: nat): $ -uZ (a -Z b) = b -Z a $;
StepHypRefExpression
1 eqtr
-uZ (a -Z b) = -uZ a -Z -uZ b -> -uZ a -Z -uZ b = b -Z a -> -uZ (a -Z b) = b -Z a
2 znegadd2
-uZ (a +Z -uZ b) = -uZ a -Z -uZ b
3 2 conv zsub
-uZ (a -Z b) = -uZ a -Z -uZ b
4 1, 3 ax_mp
-uZ a -Z -uZ b = b -Z a -> -uZ (a -Z b) = b -Z a
5 eqtr
-uZ a -Z -uZ b = -uZ -uZ b +Z -uZ a -> -uZ -uZ b +Z -uZ a = b -Z a -> -uZ a -Z -uZ b = b -Z a
6 zaddcom
-uZ a +Z -uZ -uZ b = -uZ -uZ b +Z -uZ a
7 6 conv zsub
-uZ a -Z -uZ b = -uZ -uZ b +Z -uZ a
8 5, 7 ax_mp
-uZ -uZ b +Z -uZ a = b -Z a -> -uZ a -Z -uZ b = b -Z a
9 zaddeq1
-uZ -uZ b = b -> -uZ -uZ b +Z -uZ a = b +Z -uZ a
10 9 conv zsub
-uZ -uZ b = b -> -uZ -uZ b +Z -uZ a = b -Z a
11 znegneg
-uZ -uZ b = b
12 10, 11 ax_mp
-uZ -uZ b +Z -uZ a = b -Z a
13 8, 12 ax_mp
-uZ a -Z -uZ b = b -Z a
14 4, 13 ax_mp
-uZ (a -Z b) = b -Z a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)