theorem znegadd2 (a b: nat): $ -uZ (a +Z b) = -uZ a -Z b $;
Step | Hyp | Ref | Expression |
1 |
|
eqcom |
-uZ a -Z b = -uZ (a +Z b) -> -uZ (a +Z b) = -uZ a -Z b |
2 |
|
eqzsub |
-uZ a -Z b = -uZ (a +Z b) <-> -uZ (a +Z b) +Z b = -uZ a |
3 |
|
eqtr |
-uZ (a +Z b) +Z b = b +Z -uZ (a +Z b) -> b +Z -uZ (a +Z b) = -uZ a -> -uZ (a +Z b) +Z b = -uZ a |
4 |
|
zaddcom |
-uZ (a +Z b) +Z b = b +Z -uZ (a +Z b) |
5 |
3, 4 |
ax_mp |
b +Z -uZ (a +Z b) = -uZ a -> -uZ (a +Z b) +Z b = -uZ a |
6 |
|
eqzsub |
b -Z (a +Z b) = -uZ a <-> -uZ a +Z (a +Z b) = b |
7 |
6 |
conv zsub |
b +Z -uZ (a +Z b) = -uZ a <-> -uZ a +Z (a +Z b) = b |
8 |
|
eqtr |
-uZ a +Z (a +Z b) = a +Z b +Z -uZ a -> a +Z b +Z -uZ a = b -> -uZ a +Z (a +Z b) = b |
9 |
|
zaddcom |
-uZ a +Z (a +Z b) = a +Z b +Z -uZ a |
10 |
8, 9 |
ax_mp |
a +Z b +Z -uZ a = b -> -uZ a +Z (a +Z b) = b |
11 |
|
zpncan2 |
a +Z b -Z a = b |
12 |
11 |
conv zsub |
a +Z b +Z -uZ a = b |
13 |
10, 12 |
ax_mp |
-uZ a +Z (a +Z b) = b |
14 |
7, 13 |
mpbir |
b +Z -uZ (a +Z b) = -uZ a |
15 |
5, 14 |
ax_mp |
-uZ (a +Z b) +Z b = -uZ a |
16 |
2, 15 |
mpbir |
-uZ a -Z b = -uZ (a +Z b) |
17 |
1, 16 |
ax_mp |
-uZ (a +Z b) = -uZ a -Z b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)