theorem eqzsub (a b c: nat): $ a -Z c = b <-> b +Z c = a $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a -Z c = b <-> a = b +Z c) -> (a = b +Z c <-> b +Z c = a) -> (a -Z c = b <-> b +Z c = a) |
2 |
|
znpcan |
a -Z c +Z c = a |
3 |
|
zaddeq1 |
a -Z c = b -> a -Z c +Z c = b +Z c |
4 |
2, 3 |
syl5eqr |
a -Z c = b -> a = b +Z c |
5 |
|
zpncan |
b +Z c -Z c = b |
6 |
|
zsubeq1 |
a = b +Z c -> a -Z c = b +Z c -Z c |
7 |
5, 6 |
syl6eq |
a = b +Z c -> a -Z c = b |
8 |
4, 7 |
ibii |
a -Z c = b <-> a = b +Z c |
9 |
1, 8 |
ax_mp |
(a = b +Z c <-> b +Z c = a) -> (a -Z c = b <-> b +Z c = a) |
10 |
|
eqcomb |
a = b +Z c <-> b +Z c = a |
11 |
9, 10 |
ax_mp |
a -Z c = b <-> b +Z c = a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)