Theorem zpncan2 | index | src |

theorem zpncan2 (a b: nat): $ a +Z b -Z a = b $;
StepHypRefExpression
1 eqtr
a +Z b -Z a = b +Z a -Z a -> b +Z a -Z a = b -> a +Z b -Z a = b
2 zsubeq1
a +Z b = b +Z a -> a +Z b -Z a = b +Z a -Z a
3 zaddcom
a +Z b = b +Z a
4 2, 3 ax_mp
a +Z b -Z a = b +Z a -Z a
5 1, 4 ax_mp
b +Z a -Z a = b -> a +Z b -Z a = b
6 zpncan
b +Z a -Z a = b
7 5, 6 ax_mp
a +Z b -Z a = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)