Theorem zsubeq0 | index | src |

theorem zsubeq0 (a b: nat): $ a -Z b = 0 <-> a = b $;
StepHypRefExpression
1 bitr
(a -Z b = 0 <-> 0 +Z b = a) -> (0 +Z b = a <-> a = b) -> (a -Z b = 0 <-> a = b)
2 eqzsub
a -Z b = 0 <-> 0 +Z b = a
3 1, 2 ax_mp
(0 +Z b = a <-> a = b) -> (a -Z b = 0 <-> a = b)
4 bitr
(0 +Z b = a <-> b = a) -> (b = a <-> a = b) -> (0 +Z b = a <-> a = b)
5 eqeq1
0 +Z b = b -> (0 +Z b = a <-> b = a)
6 zadd01
0 +Z b = b
7 5, 6 ax_mp
0 +Z b = a <-> b = a
8 4, 7 ax_mp
(b = a <-> a = b) -> (0 +Z b = a <-> a = b)
9 eqcomb
b = a <-> a = b
10 8, 9 ax_mp
0 +Z b = a <-> a = b
11 3, 10 ax_mp
a -Z b = 0 <-> a = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)