Theorem zsubeq | index | src |

theorem zsubeq (_m1 _m2 _n1 _n2: nat):
  $ _m1 = _m2 -> _n1 = _n2 -> _m1 -Z _n1 = _m2 -Z _n2 $;
StepHypRefExpression
1 anl
_m1 = _m2 /\ _n1 = _n2 -> _m1 = _m2
2 anr
_m1 = _m2 /\ _n1 = _n2 -> _n1 = _n2
3 1, 2 zsubeqd
_m1 = _m2 /\ _n1 = _n2 -> _m1 -Z _n1 = _m2 -Z _n2
4 3 exp
_m1 = _m2 -> _n1 = _n2 -> _m1 -Z _n1 = _m2 -Z _n2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)