Theorem zltsub0 | index | src |

theorem zltsub0 (a b: nat): $ a -Z b  a 
    
StepHypRefExpression
1 bitr3
(0 <Z -uZ (a -Z b) <-> a -Z b <Z 0) -> (0 <Z -uZ (a -Z b) <-> a <Z b) -> (a -Z b <Z 0 <-> a <Z b)
2 zlt0neg
0 <Z -uZ (a -Z b) <-> a -Z b <Z 0
3 1, 2 ax_mp
(0 <Z -uZ (a -Z b) <-> a <Z b) -> (a -Z b <Z 0 <-> a <Z b)
4 bitr
(0 <Z -uZ (a -Z b) <-> 0 <Z b -Z a) -> (0 <Z b -Z a <-> a <Z b) -> (0 <Z -uZ (a -Z b) <-> a <Z b)
5 zlteq2
-uZ (a -Z b) = b -Z a -> (0 <Z -uZ (a -Z b) <-> 0 <Z b -Z a)
6 znegsub
-uZ (a -Z b) = b -Z a
7 5, 6 ax_mp
0 <Z -uZ (a -Z b) <-> 0 <Z b -Z a
8 4, 7 ax_mp
(0 <Z b -Z a <-> a <Z b) -> (0 <Z -uZ (a -Z b) <-> a <Z b)
9 zlt0sub
0 <Z b -Z a <-> a <Z b
10 8, 9 ax_mp
0 <Z -uZ (a -Z b) <-> a <Z b
11 3, 10 ax_mp
a -Z b <Z 0 <-> a <Z b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)