theorem zltsub0 (a b: nat): $ a -Z b  a 
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | bitr3 | (0 <Z -uZ (a -Z b) <-> a -Z b <Z 0) -> (0 <Z -uZ (a -Z b) <-> a <Z b) -> (a -Z b <Z 0 <-> a <Z b) | 
        
          | 2 |  | zlt0neg | 0 <Z -uZ (a -Z b) <-> a -Z b <Z 0 | 
        
          | 3 | 1, 2 | ax_mp | (0 <Z -uZ (a -Z b) <-> a <Z b) -> (a -Z b <Z 0 <-> a <Z b) | 
        
          | 4 |  | bitr | (0 <Z -uZ (a -Z b) <-> 0 <Z b -Z a) -> (0 <Z b -Z a <-> a <Z b) -> (0 <Z -uZ (a -Z b) <-> a <Z b) | 
        
          | 5 |  | zlteq2 | -uZ (a -Z b) = b -Z a -> (0 <Z -uZ (a -Z b) <-> 0 <Z b -Z a) | 
        
          | 6 |  | znegsub | -uZ (a -Z b) = b -Z a | 
        
          | 7 | 5, 6 | ax_mp | 0 <Z -uZ (a -Z b) <-> 0 <Z b -Z a | 
        
          | 8 | 4, 7 | ax_mp | (0 <Z b -Z a <-> a <Z b) -> (0 <Z -uZ (a -Z b) <-> a <Z b) | 
        
          | 9 |  | zlt0sub | 0 <Z b -Z a <-> a <Z b | 
        
          | 10 | 8, 9 | ax_mp | 0 <Z -uZ (a -Z b) <-> a <Z b | 
        
          | 11 | 3, 10 | ax_mp | a -Z b <Z 0 <-> a <Z b | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    axs_set
     (elab,
      ax_8),
    axs_the
     (theid,
      the0),
    axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)