Theorem zlt0neg | index | src |

theorem zlt0neg (a: nat): $ 0  a 
    
StepHypRefExpression
1 oddeq
0 -Z -uZ a = a -Z 0 -> (odd (0 -Z -uZ a) <-> odd (a -Z 0))
2 1 conv zlt
0 -Z -uZ a = a -Z 0 -> (0 <Z -uZ a <-> a <Z 0)
3 eqtr4
0 -Z -uZ a = -uZ -uZ a -> a -Z 0 = -uZ -uZ a -> 0 -Z -uZ a = a -Z 0
4 zsub01
0 -Z -uZ a = -uZ -uZ a
5 3, 4 ax_mp
a -Z 0 = -uZ -uZ a -> 0 -Z -uZ a = a -Z 0
6 eqtr4
a -Z 0 = a -> -uZ -uZ a = a -> a -Z 0 = -uZ -uZ a
7 zsub02
a -Z 0 = a
8 6, 7 ax_mp
-uZ -uZ a = a -> a -Z 0 = -uZ -uZ a
9 znegneg
-uZ -uZ a = a
10 8, 9 ax_mp
a -Z 0 = -uZ -uZ a
11 5, 10 ax_mp
0 -Z -uZ a = a -Z 0
12 2, 11 ax_mp
0 <Z -uZ a <-> a <Z 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)