Theorem zsub01 | index | src |

theorem zsub01 (a: nat): $ 0 -Z a = -uZ a $;
StepHypRefExpression
1 zadd01
0 +Z -uZ a = -uZ a
2 1 conv zsub
0 -Z a = -uZ a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)