Theorem zltsubadd | index | src |

theorem zltsubadd (a b c: nat): $ a -Z b  a 
    
StepHypRefExpression
2
a <Z c +Z b <-> a +Z -uZ b <Z c +Z b +Z -uZ b
4
c +Z b +Z -uZ b = c -> (a +Z -uZ b <Z c +Z b +Z -uZ b <-> a +Z -uZ b <Z c)
5
conv zsub
c +Z b +Z -uZ b = c -> (a +Z -uZ b <Z c +Z b +Z -uZ b <-> a -Z b <Z c)
6
c +Z b -Z b = c
7
conv zsub
c +Z b +Z -uZ b = c
8
5, 7
a +Z -uZ b <Z c +Z b +Z -uZ b <-> a -Z b <Z c
9
2, 8
a -Z b <Z c <-> a <Z c +Z b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)