Theorem zltsubadd | index | src |

theorem zltsubadd (a b c: nat): $ a -Z b  a 
    
StepHypRefExpression
1 bitr2
(a <Z c +Z b <-> a +Z -uZ b <Z c +Z b +Z -uZ b) -> (a +Z -uZ b <Z c +Z b +Z -uZ b <-> a -Z b <Z c) -> (a -Z b <Z c <-> a <Z c +Z b)
2 zltadd1
a <Z c +Z b <-> a +Z -uZ b <Z c +Z b +Z -uZ b
3 1, 2 ax_mp
(a +Z -uZ b <Z c +Z b +Z -uZ b <-> a -Z b <Z c) -> (a -Z b <Z c <-> a <Z c +Z b)
4 zlteq2
c +Z b +Z -uZ b = c -> (a +Z -uZ b <Z c +Z b +Z -uZ b <-> a +Z -uZ b <Z c)
5 4 conv zsub
c +Z b +Z -uZ b = c -> (a +Z -uZ b <Z c +Z b +Z -uZ b <-> a -Z b <Z c)
6 zpncan
c +Z b -Z b = c
7 6 conv zsub
c +Z b +Z -uZ b = c
8 5, 7 ax_mp
a +Z -uZ b <Z c +Z b +Z -uZ b <-> a -Z b <Z c
9 3, 8 ax_mp
a -Z b <Z c <-> a <Z c +Z b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)