theorem zlt0sub (a b: nat): $ 0 b
Step | Hyp | Ref | Expression |
1 |
|
bitr3 |
(0 +Z b <Z a <-> 0 <Z a -Z b) -> (0 +Z b <Z a <-> b <Z a) -> (0 <Z a -Z b <-> b <Z a) |
2 |
|
zltaddsub |
0 +Z b <Z a <-> 0 <Z a -Z b |
3 |
1, 2 |
ax_mp |
(0 +Z b <Z a <-> b <Z a) -> (0 <Z a -Z b <-> b <Z a) |
4 |
|
zlteq1 |
0 +Z b = b -> (0 +Z b <Z a <-> b <Z a) |
5 |
|
zadd01 |
0 +Z b = b |
6 |
4, 5 |
ax_mp |
0 +Z b <Z a <-> b <Z a |
7 |
3, 6 |
ax_mp |
0 <Z a -Z b <-> b <Z a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)