Theorem zdvdeqd | index | src |

theorem zdvdeqd (_G: wff) (_m1 _m2 _n1 _n2: nat):
  $ _G -> _m1 = _m2 $ >
  $ _G -> _n1 = _n2 $ >
  $ _G -> (_m1 |Z _n1 <-> _m2 |Z _n2) $;
StepHypRefExpression
1 hyp _mh
_G -> _m1 = _m2
2 1 zabseqd
_G -> zabs _m1 = zabs _m2
3 hyp _nh
_G -> _n1 = _n2
4 3 zabseqd
_G -> zabs _n1 = zabs _n2
5 2, 4 dvdeqd
_G -> (zabs _m1 || zabs _n1 <-> zabs _m2 || zabs _n2)
6 5 conv zdvd
_G -> (_m1 |Z _n1 <-> _m2 |Z _n2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)