Theorem eqmdvdsub3 | index | src |

theorem eqmdvdsub3 (a n: nat): $ mod(n): zfst a = zsnd a <-> n || zabs a $;
StepHypRefExpression
2
mod(n): zfst a = zsnd a <-> mod(n): zsnd a = zfst a
5
mod(n): zsnd a = zfst a <-> n || zabs (zfst a -ZN zsnd a)
9
zfst a -ZN zsnd a = a
10
zabs (zfst a -ZN zsnd a) = zabs a
11
n || zabs (zfst a -ZN zsnd a) <-> n || zabs a
12
5, 11
mod(n): zsnd a = zfst a <-> n || zabs a
13
2, 12
mod(n): zfst a = zsnd a <-> n || zabs a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)