theorem eqmdvdsub3 (a n: nat): $ mod(n): zfst a = zsnd a <-> n || zabs a $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(mod(n): zfst a = zsnd a <-> mod(n): zsnd a = zfst a) -> (mod(n): zsnd a = zfst a <-> n || zabs a) -> (mod(n): zfst a = zsnd a <-> n || zabs a) |
2 |
|
eqmcomb |
mod(n): zfst a = zsnd a <-> mod(n): zsnd a = zfst a |
3 |
1, 2 |
ax_mp |
(mod(n): zsnd a = zfst a <-> n || zabs a) -> (mod(n): zfst a = zsnd a <-> n || zabs a) |
4 |
|
bitr |
(mod(n): zsnd a = zfst a <-> n || zabs (zfst a -ZN zsnd a)) -> (n || zabs (zfst a -ZN zsnd a) <-> n || zabs a) -> (mod(n): zsnd a = zfst a <-> n || zabs a) |
5 |
|
eqmdvdsub2 |
mod(n): zsnd a = zfst a <-> n || zabs (zfst a -ZN zsnd a) |
6 |
4, 5 |
ax_mp |
(n || zabs (zfst a -ZN zsnd a) <-> n || zabs a) -> (mod(n): zsnd a = zfst a <-> n || zabs a) |
7 |
|
dvdeq2 |
zabs (zfst a -ZN zsnd a) = zabs a -> (n || zabs (zfst a -ZN zsnd a) <-> n || zabs a) |
8 |
|
zabseq |
zfst a -ZN zsnd a = a -> zabs (zfst a -ZN zsnd a) = zabs a |
9 |
|
zfstsnd |
zfst a -ZN zsnd a = a |
10 |
8, 9 |
ax_mp |
zabs (zfst a -ZN zsnd a) = zabs a |
11 |
7, 10 |
ax_mp |
n || zabs (zfst a -ZN zsnd a) <-> n || zabs a |
12 |
6, 11 |
ax_mp |
mod(n): zsnd a = zfst a <-> n || zabs a |
13 |
3, 12 |
ax_mp |
mod(n): zfst a = zsnd a <-> n || zabs a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)