theorem eqmdvdsub2 (a b n: nat): $ mod(n): a = b <-> n || zabs (b -ZN a) $;
| Step | Hyp | Ref | Expression |
| 1 |
|
eor |
(a <= b -> (mod(n): a = b <-> n || zabs (b -ZN a))) ->
(b <= a -> (mod(n): a = b <-> n || zabs (b -ZN a))) ->
a <= b \/ b <= a ->
(mod(n): a = b <-> n || zabs (b -ZN a)) |
| 2 |
|
eqmdvdsub |
a <= b -> (mod(n): a = b <-> n || b - a) |
| 3 |
|
lezabszn |
a <= b -> zabs (b -ZN a) = b - a |
| 4 |
3 |
dvdeq2d |
a <= b -> (n || zabs (b -ZN a) <-> n || b - a) |
| 5 |
2, 4 |
bitr4d |
a <= b -> (mod(n): a = b <-> n || zabs (b -ZN a)) |
| 6 |
1, 5 |
ax_mp |
(b <= a -> (mod(n): a = b <-> n || zabs (b -ZN a))) -> a <= b \/ b <= a -> (mod(n): a = b <-> n || zabs (b -ZN a)) |
| 7 |
|
eqmcomb |
mod(n): a = b <-> mod(n): b = a |
| 8 |
|
eqmdvdsub |
b <= a -> (mod(n): b = a <-> n || a - b) |
| 9 |
|
zabscom |
zabs (b -ZN a) = zabs (a -ZN b) |
| 10 |
|
lezabszn |
b <= a -> zabs (a -ZN b) = a - b |
| 11 |
9, 10 |
syl5eq |
b <= a -> zabs (b -ZN a) = a - b |
| 12 |
11 |
dvdeq2d |
b <= a -> (n || zabs (b -ZN a) <-> n || a - b) |
| 13 |
8, 12 |
bitr4d |
b <= a -> (mod(n): b = a <-> n || zabs (b -ZN a)) |
| 14 |
7, 13 |
syl5bb |
b <= a -> (mod(n): a = b <-> n || zabs (b -ZN a)) |
| 15 |
6, 14 |
ax_mp |
a <= b \/ b <= a -> (mod(n): a = b <-> n || zabs (b -ZN a)) |
| 16 |
|
leorle |
a <= b \/ b <= a |
| 17 |
15, 16 |
ax_mp |
mod(n): a = b <-> n || zabs (b -ZN a) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)