Theorem zmulneg2 | index | src |

theorem zmulneg2 (a b: nat): $ a *Z -uZ b = -uZ (a *Z b) $;
StepHypRefExpression
1 eqtr
a *Z -uZ b = -uZ b *Z a -> -uZ b *Z a = -uZ (a *Z b) -> a *Z -uZ b = -uZ (a *Z b)
2 zmulcom
a *Z -uZ b = -uZ b *Z a
3 1, 2 ax_mp
-uZ b *Z a = -uZ (a *Z b) -> a *Z -uZ b = -uZ (a *Z b)
4 eqtr
-uZ b *Z a = -uZ (b *Z a) -> -uZ (b *Z a) = -uZ (a *Z b) -> -uZ b *Z a = -uZ (a *Z b)
5 zmulneg1
-uZ b *Z a = -uZ (b *Z a)
6 4, 5 ax_mp
-uZ (b *Z a) = -uZ (a *Z b) -> -uZ b *Z a = -uZ (a *Z b)
7 znegeq
b *Z a = a *Z b -> -uZ (b *Z a) = -uZ (a *Z b)
8 zmulcom
b *Z a = a *Z b
9 7, 8 ax_mp
-uZ (b *Z a) = -uZ (a *Z b)
10 6, 9 ax_mp
-uZ b *Z a = -uZ (a *Z b)
11 3, 10 ax_mp
a *Z -uZ b = -uZ (a *Z b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)