Theorem zdvdneg1 | index | src |

theorem zdvdneg1 (a b: nat): $ -uZ a |Z b <-> a |Z b $;
StepHypRefExpression
1 dvdeq1
zabs (-uZ a) = zabs a -> (zabs (-uZ a) || zabs b <-> zabs a || zabs b)
2 1 conv zdvd
zabs (-uZ a) = zabs a -> (-uZ a |Z b <-> a |Z b)
3 zabsneg
zabs (-uZ a) = zabs a
4 2, 3 ax_mp
-uZ a |Z b <-> a |Z b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)