| Step | Hyp | Ref | Expression |
| 1 |
|
zdvddef |
n |Z a <-> E. x x *Z n = a |
| 2 |
|
zdvddef |
n |Z b <-> E. y y *Z n = b |
| 3 |
|
izdvd |
(x +Z y) *Z n = a +Z b -> n |Z a +Z b |
| 4 |
|
zaddmul |
(x +Z y) *Z n = x *Z n +Z y *Z n |
| 5 |
|
zaddeq |
x *Z n = a -> y *Z n = b -> x *Z n +Z y *Z n = a +Z b |
| 6 |
5 |
imp |
x *Z n = a /\ y *Z n = b -> x *Z n +Z y *Z n = a +Z b |
| 7 |
4, 6 |
syl5eq |
x *Z n = a /\ y *Z n = b -> (x +Z y) *Z n = a +Z b |
| 8 |
3, 7 |
syl |
x *Z n = a /\ y *Z n = b -> n |Z a +Z b |
| 9 |
8 |
eexda |
x *Z n = a -> E. y y *Z n = b -> n |Z a +Z b |
| 10 |
2, 9 |
syl5bi |
x *Z n = a -> n |Z b -> n |Z a +Z b |
| 11 |
|
zdvddef |
n |Z a +Z b <-> E. z z *Z n = a +Z b |
| 12 |
|
izdvd |
(z -Z x) *Z n = b -> n |Z b |
| 13 |
|
zaddcan2 |
a +Z (z -Z x) *Z n = a +Z b <-> (z -Z x) *Z n = b |
| 14 |
|
zaddeq1 |
x *Z n = a -> x *Z n +Z (z -Z x) *Z n = a +Z (z -Z x) *Z n |
| 15 |
14 |
anwl |
x *Z n = a /\ z *Z n = a +Z b -> x *Z n +Z (z -Z x) *Z n = a +Z (z -Z x) *Z n |
| 16 |
|
zaddmul |
(x +Z (z -Z x)) *Z n = x *Z n +Z (z -Z x) *Z n |
| 17 |
|
zmul02 |
(x +Z (z -Z x)) *Z 0 = 0 |
| 18 |
|
zmuleq2 |
n = 0 -> (x +Z (z -Z x)) *Z n = (x +Z (z -Z x)) *Z 0 |
| 19 |
17, 18 |
syl6eq |
n = 0 -> (x +Z (z -Z x)) *Z n = 0 |
| 20 |
|
zmul02 |
z *Z 0 = 0 |
| 21 |
|
zmuleq2 |
n = 0 -> z *Z n = z *Z 0 |
| 22 |
20, 21 |
syl6eq |
n = 0 -> z *Z n = 0 |
| 23 |
19, 22 |
eqtr4d |
n = 0 -> (x +Z (z -Z x)) *Z n = z *Z n |
| 24 |
23 |
anwr |
x *Z n = a /\ z *Z n = a +Z b /\ n = 0 -> (x +Z (z -Z x)) *Z n = z *Z n |
| 25 |
|
zpncan3 |
x +Z (z -Z x) = z |
| 26 |
25 |
a1i |
x *Z n = a /\ z *Z n = a +Z b /\ ~n = 0 -> x +Z (z -Z x) = z |
| 27 |
26 |
zmuleq1d |
x *Z n = a /\ z *Z n = a +Z b /\ ~n = 0 -> (x +Z (z -Z x)) *Z n = z *Z n |
| 28 |
24, 27 |
casesda |
x *Z n = a /\ z *Z n = a +Z b -> (x +Z (z -Z x)) *Z n = z *Z n |
| 29 |
|
anr |
x *Z n = a /\ z *Z n = a +Z b -> z *Z n = a +Z b |
| 30 |
28, 29 |
eqtrd |
x *Z n = a /\ z *Z n = a +Z b -> (x +Z (z -Z x)) *Z n = a +Z b |
| 31 |
16, 30 |
syl5eqr |
x *Z n = a /\ z *Z n = a +Z b -> x *Z n +Z (z -Z x) *Z n = a +Z b |
| 32 |
15, 31 |
eqtr3d |
x *Z n = a /\ z *Z n = a +Z b -> a +Z (z -Z x) *Z n = a +Z b |
| 33 |
13, 32 |
sylib |
x *Z n = a /\ z *Z n = a +Z b -> (z -Z x) *Z n = b |
| 34 |
12, 33 |
syl |
x *Z n = a /\ z *Z n = a +Z b -> n |Z b |
| 35 |
34 |
eexda |
x *Z n = a -> E. z z *Z n = a +Z b -> n |Z b |
| 36 |
11, 35 |
syl5bi |
x *Z n = a -> n |Z a +Z b -> n |Z b |
| 37 |
10, 36 |
ibid |
x *Z n = a -> (n |Z b <-> n |Z a +Z b) |
| 38 |
37 |
eex |
E. x x *Z n = a -> (n |Z b <-> n |Z a +Z b) |
| 39 |
1, 38 |
sylbi |
n |Z a -> (n |Z b <-> n |Z a +Z b) |