theorem zaddmul (a b c: nat): $ (a +Z b) *Z c = a *Z c +Z b *Z c $;
| Step | Hyp | Ref | Expression |
| 1 |
|
eqtr |
(a +Z b) *Z c = c *Z (a +Z b) -> c *Z (a +Z b) = a *Z c +Z b *Z c -> (a +Z b) *Z c = a *Z c +Z b *Z c |
| 2 |
|
zmulcom |
(a +Z b) *Z c = c *Z (a +Z b) |
| 3 |
1, 2 |
ax_mp |
c *Z (a +Z b) = a *Z c +Z b *Z c -> (a +Z b) *Z c = a *Z c +Z b *Z c |
| 4 |
|
eqtr |
c *Z (a +Z b) = c *Z a +Z c *Z b -> c *Z a +Z c *Z b = a *Z c +Z b *Z c -> c *Z (a +Z b) = a *Z c +Z b *Z c |
| 5 |
|
zmuladd |
c *Z (a +Z b) = c *Z a +Z c *Z b |
| 6 |
4, 5 |
ax_mp |
c *Z a +Z c *Z b = a *Z c +Z b *Z c -> c *Z (a +Z b) = a *Z c +Z b *Z c |
| 7 |
|
zaddeq |
c *Z a = a *Z c -> c *Z b = b *Z c -> c *Z a +Z c *Z b = a *Z c +Z b *Z c |
| 8 |
|
zmulcom |
c *Z a = a *Z c |
| 9 |
7, 8 |
ax_mp |
c *Z b = b *Z c -> c *Z a +Z c *Z b = a *Z c +Z b *Z c |
| 10 |
|
zmulcom |
c *Z b = b *Z c |
| 11 |
9, 10 |
ax_mp |
c *Z a +Z c *Z b = a *Z c +Z b *Z c |
| 12 |
6, 11 |
ax_mp |
c *Z (a +Z b) = a *Z c +Z b *Z c |
| 13 |
3, 12 |
ax_mp |
(a +Z b) *Z c = a *Z c +Z b *Z c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)