theorem zdvdadd2 (a b n: nat): $ n |Z a -> (n |Z b <-> n |Z b +Z a) $;
Step | Hyp | Ref | Expression |
1 |
|
eqidd |
a +Z b = b +Z a -> n = n |
2 |
|
id |
a +Z b = b +Z a -> a +Z b = b +Z a |
3 |
1, 2 |
zdvdeqd |
a +Z b = b +Z a -> (n |Z a +Z b <-> n |Z b +Z a) |
4 |
|
zaddcom |
a +Z b = b +Z a |
5 |
3, 4 |
ax_mp |
n |Z a +Z b <-> n |Z b +Z a |
6 |
|
zdvdadd1 |
n |Z a -> (n |Z b <-> n |Z a +Z b) |
7 |
5, 6 |
syl6bb |
n |Z a -> (n |Z b <-> n |Z b +Z a) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)