Theorem zdvdadd2 | index | src |

theorem zdvdadd2 (a b n: nat): $ n |Z a -> (n |Z b <-> n |Z b +Z a) $;
StepHypRefExpression
1 eqidd
a +Z b = b +Z a -> n = n
2 id
a +Z b = b +Z a -> a +Z b = b +Z a
3 1, 2 zdvdeqd
a +Z b = b +Z a -> (n |Z a +Z b <-> n |Z b +Z a)
4 zaddcom
a +Z b = b +Z a
5 3, 4 ax_mp
n |Z a +Z b <-> n |Z b +Z a
6 zdvdadd1
n |Z a -> (n |Z b <-> n |Z a +Z b)
7 5, 6 syl6bb
n |Z a -> (n |Z b <-> n |Z b +Z a)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)