theorem zdvdadd2 (a b n: nat): $ n |Z a -> (n |Z b <-> n |Z b +Z a) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 |
a +Z b = b +Z a -> n = n |
||
2 |
a +Z b = b +Z a -> a +Z b = b +Z a |
||
3 |
a +Z b = b +Z a -> (n |Z a +Z b <-> n |Z b +Z a) |
||
4 |
a +Z b = b +Z a |
||
5 |
n |Z a +Z b <-> n |Z b +Z a |
||
6 |
n |Z a -> (n |Z b <-> n |Z a +Z b) |
||
7 |
n |Z a -> (n |Z b <-> n |Z b +Z a) |