Theorem zdvdmul12 | index | src |

theorem zdvdmul12 (a b c: nat): $ a |Z b -> a |Z c *Z b $;
StepHypRefExpression
1 zdvdmul1
b |Z c *Z b
2 zdvdtr
a |Z b -> b |Z c *Z b -> a |Z c *Z b
3 1, 2 mpi
a |Z b -> a |Z c *Z b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)