Theorem zdvdtr | index | src |

theorem zdvdtr (a b c: nat): $ a |Z b -> b |Z c -> a |Z c $;
StepHypRefExpression
1 dvdtr
zabs a || zabs b -> zabs b || zabs c -> zabs a || zabs c
2 1 conv zdvd
a |Z b -> b |Z c -> a |Z c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_peano (peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)