Theorem zdvdb0 | index | src |

theorem zdvdb0 (a b: nat): $ b0 a |Z b0 b <-> a || b $;
StepHypRefExpression
1 dvdeq
zabs (b0 a) = a -> zabs (b0 b) = b -> (zabs (b0 a) || zabs (b0 b) <-> a || b)
2 1 conv zdvd
zabs (b0 a) = a -> zabs (b0 b) = b -> (b0 a |Z b0 b <-> a || b)
3 zabsb0
zabs (b0 a) = a
4 2, 3 ax_mp
zabs (b0 b) = b -> (b0 a |Z b0 b <-> a || b)
5 zabsb0
zabs (b0 b) = b
6 4, 5 ax_mp
b0 a |Z b0 b <-> a || b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)