Theorem zdvdmul1 | index | src |

theorem zdvdmul1 (a b: nat): $ a |Z b *Z a $;
StepHypRefExpression
1 dvdeq2
zabs (b *Z a) = zabs b * zabs a -> (zabs a || zabs (b *Z a) <-> zabs a || zabs b * zabs a)
2 1 conv zdvd
zabs (b *Z a) = zabs b * zabs a -> (a |Z b *Z a <-> zabs a || zabs b * zabs a)
3 zabsmul
zabs (b *Z a) = zabs b * zabs a
4 2, 3 ax_mp
a |Z b *Z a <-> zabs a || zabs b * zabs a
5 dvdmul1
zabs a || zabs b * zabs a
6 4, 5 mpbir
a |Z b *Z a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)