Theorem zdvdmul2 | index | src |

theorem zdvdmul2 (a b: nat): $ a |Z a *Z b $;
StepHypRefExpression
1 zdvdeq2
b *Z a = a *Z b -> (a |Z b *Z a <-> a |Z a *Z b)
2 zmulcom
b *Z a = a *Z b
3 1, 2 ax_mp
a |Z b *Z a <-> a |Z a *Z b
4 zdvdmul1
a |Z b *Z a
5 3, 4 mpbi
a |Z a *Z b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)