theorem zdvd12 (a: nat): $ a |Z b0 1 <-> zabs a = 1 $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(a |Z b0 1 <-> zabs a || 1) -> (zabs a || 1 <-> zabs a = 1) -> (a |Z b0 1 <-> zabs a = 1) |
2 |
|
zdvdb02 |
a |Z b0 1 <-> zabs a || 1 |
3 |
1, 2 |
ax_mp |
(zabs a || 1 <-> zabs a = 1) -> (a |Z b0 1 <-> zabs a = 1) |
4 |
|
dvd12 |
zabs a || 1 <-> zabs a = 1 |
5 |
3, 4 |
ax_mp |
a |Z b0 1 <-> zabs a = 1 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)