theorem dvd12 (a: nat): $ a || 1 <-> a = 1 $;
| Step | Hyp | Ref | Expression |
| 1 |
|
d1ne0 |
1 != 0 |
| 2 |
1 |
a1i |
a || 1 -> 1 != 0 |
| 3 |
|
id |
a || 1 -> a || 1 |
| 4 |
2, 3 |
dvdle |
a || 1 -> a <= 1 |
| 5 |
|
le11 |
1 <= a <-> a != 0 |
| 6 |
1 |
conv ne |
~1 = 0 |
| 7 |
|
dvd01 |
0 || 1 <-> 1 = 0 |
| 8 |
|
dvdeq1 |
a = 0 -> (a || 1 <-> 0 || 1) |
| 9 |
8 |
anwr |
a || 1 /\ a = 0 -> (a || 1 <-> 0 || 1) |
| 10 |
|
anl |
a || 1 /\ a = 0 -> a || 1 |
| 11 |
9, 10 |
mpbid |
a || 1 /\ a = 0 -> 0 || 1 |
| 12 |
7, 11 |
sylib |
a || 1 /\ a = 0 -> 1 = 0 |
| 13 |
6, 12 |
mtani |
a || 1 -> ~a = 0 |
| 14 |
13 |
conv ne |
a || 1 -> a != 0 |
| 15 |
5, 14 |
sylibr |
a || 1 -> 1 <= a |
| 16 |
4, 15 |
leasymd |
a || 1 -> a = 1 |
| 17 |
|
dvdid |
1 || 1 |
| 18 |
|
dvdeq1 |
a = 1 -> (a || 1 <-> 1 || 1) |
| 19 |
17, 18 |
mpbiri |
a = 1 -> a || 1 |
| 20 |
16, 19 |
ibii |
a || 1 <-> a = 1 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)