theorem d2dvd1: $ ~2 || 1 $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | d1ne0 | 1 != 0 |
|
| 2 | 1 | a1i | 2 || 1 -> 1 != 0 |
| 3 | id | 2 || 1 -> 2 || 1 |
|
| 4 | 2, 3 | dvdle | 2 || 1 -> 2 <= 1 |
| 5 | ltnle | 1 < 2 <-> ~2 <= 1 |
|
| 6 | d1lt2 | 1 < 2 |
|
| 7 | 5, 6 | mpbi | ~2 <= 1 |
| 8 | 4, 7 | mt | ~2 || 1 |