| Step | Hyp | Ref | Expression |
| 1 |
|
eqidd |
_1 = l -> i = i |
| 2 |
|
id |
_1 = l -> _1 = l |
| 3 |
1, 2 |
ntheqd |
_1 = l -> nth i _1 = nth i l |
| 4 |
|
eqidd |
_1 = l -> 1 = 1 |
| 5 |
3, 4 |
subeqd |
_1 = l -> nth i _1 - 1 = nth i l - 1 |
| 6 |
5 |
lameqd |
_1 = l -> \ i, nth i _1 - 1 == \ i, nth i l - 1 |
| 7 |
2 |
leneqd |
_1 = l -> len _1 = len l |
| 8 |
6, 7 |
lfneqd |
_1 = l -> lfn (\ i, nth i _1 - 1) (len _1) = lfn (\ i, nth i l - 1) (len l) |
| 9 |
8, 2 |
eqeqd |
_1 = l -> (lfn (\ i, nth i _1 - 1) (len _1) = _1 <-> lfn (\ i, nth i l - 1) (len l) = l) |
| 10 |
|
eqidd |
_1 = 0 -> i = i |
| 11 |
|
id |
_1 = 0 -> _1 = 0 |
| 12 |
10, 11 |
ntheqd |
_1 = 0 -> nth i _1 = nth i 0 |
| 13 |
|
eqidd |
_1 = 0 -> 1 = 1 |
| 14 |
12, 13 |
subeqd |
_1 = 0 -> nth i _1 - 1 = nth i 0 - 1 |
| 15 |
14 |
lameqd |
_1 = 0 -> \ i, nth i _1 - 1 == \ i, nth i 0 - 1 |
| 16 |
11 |
leneqd |
_1 = 0 -> len _1 = len 0 |
| 17 |
15, 16 |
lfneqd |
_1 = 0 -> lfn (\ i, nth i _1 - 1) (len _1) = lfn (\ i, nth i 0 - 1) (len 0) |
| 18 |
17, 11 |
eqeqd |
_1 = 0 -> (lfn (\ i, nth i _1 - 1) (len _1) = _1 <-> lfn (\ i, nth i 0 - 1) (len 0) = 0) |
| 19 |
|
eqidd |
_1 = a2 -> i = i |
| 20 |
|
id |
_1 = a2 -> _1 = a2 |
| 21 |
19, 20 |
ntheqd |
_1 = a2 -> nth i _1 = nth i a2 |
| 22 |
|
eqidd |
_1 = a2 -> 1 = 1 |
| 23 |
21, 22 |
subeqd |
_1 = a2 -> nth i _1 - 1 = nth i a2 - 1 |
| 24 |
23 |
lameqd |
_1 = a2 -> \ i, nth i _1 - 1 == \ i, nth i a2 - 1 |
| 25 |
20 |
leneqd |
_1 = a2 -> len _1 = len a2 |
| 26 |
24, 25 |
lfneqd |
_1 = a2 -> lfn (\ i, nth i _1 - 1) (len _1) = lfn (\ i, nth i a2 - 1) (len a2) |
| 27 |
26, 20 |
eqeqd |
_1 = a2 -> (lfn (\ i, nth i _1 - 1) (len _1) = _1 <-> lfn (\ i, nth i a2 - 1) (len a2) = a2) |
| 28 |
|
eqidd |
_1 = a1 : a2 -> i = i |
| 29 |
|
id |
_1 = a1 : a2 -> _1 = a1 : a2 |
| 30 |
28, 29 |
ntheqd |
_1 = a1 : a2 -> nth i _1 = nth i (a1 : a2) |
| 31 |
|
eqidd |
_1 = a1 : a2 -> 1 = 1 |
| 32 |
30, 31 |
subeqd |
_1 = a1 : a2 -> nth i _1 - 1 = nth i (a1 : a2) - 1 |
| 33 |
32 |
lameqd |
_1 = a1 : a2 -> \ i, nth i _1 - 1 == \ i, nth i (a1 : a2) - 1 |
| 34 |
29 |
leneqd |
_1 = a1 : a2 -> len _1 = len (a1 : a2) |
| 35 |
33, 34 |
lfneqd |
_1 = a1 : a2 -> lfn (\ i, nth i _1 - 1) (len _1) = lfn (\ i, nth i (a1 : a2) - 1) (len (a1 : a2)) |
| 36 |
35, 29 |
eqeqd |
_1 = a1 : a2 -> (lfn (\ i, nth i _1 - 1) (len _1) = _1 <-> lfn (\ i, nth i (a1 : a2) - 1) (len (a1 : a2)) = a1 : a2) |
| 37 |
|
eqtr |
lfn (\ i, nth i 0 - 1) (len 0) = lfn (\ i, nth i 0 - 1) 0 -> lfn (\ i, nth i 0 - 1) 0 = 0 -> lfn (\ i, nth i 0 - 1) (len 0) = 0 |
| 38 |
|
lfneq2 |
len 0 = 0 -> lfn (\ i, nth i 0 - 1) (len 0) = lfn (\ i, nth i 0 - 1) 0 |
| 39 |
|
len0 |
len 0 = 0 |
| 40 |
38, 39 |
ax_mp |
lfn (\ i, nth i 0 - 1) (len 0) = lfn (\ i, nth i 0 - 1) 0 |
| 41 |
37, 40 |
ax_mp |
lfn (\ i, nth i 0 - 1) 0 = 0 -> lfn (\ i, nth i 0 - 1) (len 0) = 0 |
| 42 |
|
lfnaux0 |
lfnaux (\ i, nth i 0 - 1) 0 0 = 0 |
| 43 |
42 |
conv lfn |
lfn (\ i, nth i 0 - 1) 0 = 0 |
| 44 |
41, 43 |
ax_mp |
lfn (\ i, nth i 0 - 1) (len 0) = 0 |
| 45 |
|
lfneq2 |
len (a1 : a2) = suc (len a2) -> lfn (\ i, nth i (a1 : a2) - 1) (len (a1 : a2)) = lfn (\ i, nth i (a1 : a2) - 1) (suc (len a2)) |
| 46 |
|
lenS |
len (a1 : a2) = suc (len a2) |
| 47 |
45, 46 |
ax_mp |
lfn (\ i, nth i (a1 : a2) - 1) (len (a1 : a2)) = lfn (\ i, nth i (a1 : a2) - 1) (suc (len a2)) |
| 48 |
|
lfnS |
lfn (\ i, nth i (a1 : a2) - 1) (suc (len a2)) = (\ i, nth i (a1 : a2) - 1) @ 0 : lfn (\ a3, (\ i, nth i (a1 : a2) - 1) @ suc a3) (len a2) |
| 49 |
|
conseq |
(\ i, nth i (a1 : a2) - 1) @ 0 = a1 ->
lfn (\ a3, (\ i, nth i (a1 : a2) - 1) @ suc a3) (len a2) = lfn (\ i, nth i a2 - 1) (len a2) ->
(\ i, nth i (a1 : a2) - 1) @ 0 : lfn (\ a3, (\ i, nth i (a1 : a2) - 1) @ suc a3) (len a2) = a1 : lfn (\ i, nth i a2 - 1) (len a2) |
| 50 |
|
sucsub1 |
suc a1 - 1 = a1 |
| 51 |
|
nthZ |
nth 0 (a1 : a2) = suc a1 |
| 52 |
|
ntheq1 |
i = 0 -> nth i (a1 : a2) = nth 0 (a1 : a2) |
| 53 |
51, 52 |
syl6eq |
i = 0 -> nth i (a1 : a2) = suc a1 |
| 54 |
53 |
subeq1d |
i = 0 -> nth i (a1 : a2) - 1 = suc a1 - 1 |
| 55 |
50, 54 |
syl6eq |
i = 0 -> nth i (a1 : a2) - 1 = a1 |
| 56 |
55 |
applame |
(\ i, nth i (a1 : a2) - 1) @ 0 = a1 |
| 57 |
49, 56 |
ax_mp |
lfn (\ a3, (\ i, nth i (a1 : a2) - 1) @ suc a3) (len a2) = lfn (\ i, nth i a2 - 1) (len a2) ->
(\ i, nth i (a1 : a2) - 1) @ 0 : lfn (\ a3, (\ i, nth i (a1 : a2) - 1) @ suc a3) (len a2) = a1 : lfn (\ i, nth i a2 - 1) (len a2) |
| 58 |
|
lfneq1 |
\ a3, (\ i, nth i (a1 : a2) - 1) @ suc a3 == \ i, nth i a2 - 1 -> lfn (\ a3, (\ i, nth i (a1 : a2) - 1) @ suc a3) (len a2) = lfn (\ i, nth i a2 - 1) (len a2) |
| 59 |
|
eqstr |
\ a3, (\ i, nth i (a1 : a2) - 1) @ suc a3 == \ a3, nth a3 a2 - 1 ->
\ a3, nth a3 a2 - 1 == \ i, nth i a2 - 1 ->
\ a3, (\ i, nth i (a1 : a2) - 1) @ suc a3 == \ i, nth i a2 - 1 |
| 60 |
|
nthS |
nth (suc a3) (a1 : a2) = nth a3 a2 |
| 61 |
|
ntheq1 |
i = suc a3 -> nth i (a1 : a2) = nth (suc a3) (a1 : a2) |
| 62 |
60, 61 |
syl6eq |
i = suc a3 -> nth i (a1 : a2) = nth a3 a2 |
| 63 |
62 |
subeq1d |
i = suc a3 -> nth i (a1 : a2) - 1 = nth a3 a2 - 1 |
| 64 |
63 |
applame |
(\ i, nth i (a1 : a2) - 1) @ suc a3 = nth a3 a2 - 1 |
| 65 |
64 |
lameqi |
\ a3, (\ i, nth i (a1 : a2) - 1) @ suc a3 == \ a3, nth a3 a2 - 1 |
| 66 |
59, 65 |
ax_mp |
\ a3, nth a3 a2 - 1 == \ i, nth i a2 - 1 -> \ a3, (\ i, nth i (a1 : a2) - 1) @ suc a3 == \ i, nth i a2 - 1 |
| 67 |
|
ntheq1 |
a3 = i -> nth a3 a2 = nth i a2 |
| 68 |
67 |
subeq1d |
a3 = i -> nth a3 a2 - 1 = nth i a2 - 1 |
| 69 |
68 |
cbvlam |
\ a3, nth a3 a2 - 1 == \ i, nth i a2 - 1 |
| 70 |
66, 69 |
ax_mp |
\ a3, (\ i, nth i (a1 : a2) - 1) @ suc a3 == \ i, nth i a2 - 1 |
| 71 |
58, 70 |
ax_mp |
lfn (\ a3, (\ i, nth i (a1 : a2) - 1) @ suc a3) (len a2) = lfn (\ i, nth i a2 - 1) (len a2) |
| 72 |
57, 71 |
ax_mp |
(\ i, nth i (a1 : a2) - 1) @ 0 : lfn (\ a3, (\ i, nth i (a1 : a2) - 1) @ suc a3) (len a2) = a1 : lfn (\ i, nth i a2 - 1) (len a2) |
| 73 |
|
conseq2 |
lfn (\ i, nth i a2 - 1) (len a2) = a2 -> a1 : lfn (\ i, nth i a2 - 1) (len a2) = a1 : a2 |
| 74 |
72, 73 |
syl5eq |
lfn (\ i, nth i a2 - 1) (len a2) = a2 -> (\ i, nth i (a1 : a2) - 1) @ 0 : lfn (\ a3, (\ i, nth i (a1 : a2) - 1) @ suc a3) (len a2) = a1 : a2 |
| 75 |
48, 74 |
syl5eq |
lfn (\ i, nth i a2 - 1) (len a2) = a2 -> lfn (\ i, nth i (a1 : a2) - 1) (suc (len a2)) = a1 : a2 |
| 76 |
47, 75 |
syl5eq |
lfn (\ i, nth i a2 - 1) (len a2) = a2 -> lfn (\ i, nth i (a1 : a2) - 1) (len (a1 : a2)) = a1 : a2 |
| 77 |
9, 18, 27, 36, 44, 76 |
listind |
lfn (\ i, nth i l - 1) (len l) = l |