theorem lfnS (F: set) {i: nat} (n: nat):
  $ lfn F (suc n) = F @ 0 : lfn (\ i, F @ suc i) n $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | eqtr4 | lfn F (suc n) = F @ 0 : lfnaux F (suc 0) n -> F @ 0 : lfn (\ i, F @ suc i) n = F @ 0 : lfnaux F (suc 0) n -> lfn F (suc n) = F @ 0 : lfn (\ i, F @ suc i) n | 
        
          | 2 |  | lfnauxS | lfnaux F 0 (suc n) = F @ 0 : lfnaux F (suc 0) n | 
        
          | 3 | 2 | conv lfn | lfn F (suc n) = F @ 0 : lfnaux F (suc 0) n | 
        
          | 4 | 1, 3 | ax_mp | F @ 0 : lfn (\ i, F @ suc i) n = F @ 0 : lfnaux F (suc 0) n -> lfn F (suc n) = F @ 0 : lfn (\ i, F @ suc i) n | 
        
          | 5 |  | conseq2 | lfn (\ i, F @ suc i) n = lfnaux F (suc 0) n -> F @ 0 : lfn (\ i, F @ suc i) n = F @ 0 : lfnaux F (suc 0) n | 
        
          | 6 |  | lfnauxshift | A. a1 (\ i, F @ suc i) @ (0 + a1) = F @ (suc 0 + a1) -> lfnaux (\ i, F @ suc i) 0 n = lfnaux F (suc 0) n | 
        
          | 7 | 6 | conv lfn | A. a1 (\ i, F @ suc i) @ (0 + a1) = F @ (suc 0 + a1) -> lfn (\ i, F @ suc i) n = lfnaux F (suc 0) n | 
        
          | 8 |  | addS1 | suc 0 + a1 = suc (0 + a1) | 
        
          | 9 |  | suceq | i = 0 + a1 -> suc i = suc (0 + a1) | 
        
          | 10 | 8, 9 | syl6eqr | i = 0 + a1 -> suc i = suc 0 + a1 | 
        
          | 11 | 10 | appeq2d | i = 0 + a1 -> F @ suc i = F @ (suc 0 + a1) | 
        
          | 12 | 11 | applame | (\ i, F @ suc i) @ (0 + a1) = F @ (suc 0 + a1) | 
        
          | 13 | 12 | ax_gen | A. a1 (\ i, F @ suc i) @ (0 + a1) = F @ (suc 0 + a1) | 
        
          | 14 | 7, 13 | ax_mp | lfn (\ i, F @ suc i) n = lfnaux F (suc 0) n | 
        
          | 15 | 5, 14 | ax_mp | F @ 0 : lfn (\ i, F @ suc i) n = F @ 0 : lfnaux F (suc 0) n | 
        
          | 16 | 4, 15 | ax_mp | lfn F (suc n) = F @ 0 : lfn (\ i, F @ suc i) n | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)