theorem ntheqd (_G: wff) (_n1 _n2 _l1 _l2: nat):
$ _G -> _n1 = _n2 $ >
$ _G -> _l1 = _l2 $ >
$ _G -> nth _n1 _l1 = nth _n2 _l2 $;
Step | Hyp | Ref | Expression |
1 |
|
hyp _nh |
_G -> _n1 = _n2 |
2 |
|
hyp _lh |
_G -> _l1 = _l2 |
3 |
2 |
leneqd |
_G -> len _l1 = len _l2 |
4 |
1, 3 |
lteqd |
_G -> (_n1 < len _l1 <-> _n2 < len _l2) |
5 |
2 |
listfneqd |
_G -> listfn _l1 = listfn _l2 |
6 |
5 |
nseqd |
_G -> listfn _l1 == listfn _l2 |
7 |
6, 1 |
appeqd |
_G -> listfn _l1 @ _n1 = listfn _l2 @ _n2 |
8 |
7 |
suceqd |
_G -> suc (listfn _l1 @ _n1) = suc (listfn _l2 @ _n2) |
9 |
|
eqidd |
_G -> 0 = 0 |
10 |
4, 8, 9 |
ifeqd |
_G -> if (_n1 < len _l1) (suc (listfn _l1 @ _n1)) 0 = if (_n2 < len _l2) (suc (listfn _l2 @ _n2)) 0 |
11 |
10 |
conv nth |
_G -> nth _n1 _l1 = nth _n2 _l2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)