theorem nseqd (_G: wff) (_a1 _a2: nat):
$ _G -> _a1 = _a2 $ >
$ _G -> _a1 == _a2 $;
Step | Hyp | Ref | Expression |
1 |
|
hyp _ah |
_G -> _a1 = _a2 |
2 |
|
eqidd |
_G -> x = x |
3 |
1, 2 |
shreqd |
_G -> shr _a1 x = shr _a2 x |
4 |
3 |
oddeqd |
_G -> (odd (shr _a1 x) <-> odd (shr _a2 x)) |
5 |
4 |
abeqd |
_G -> {x | odd (shr _a1 x)} == {x | odd (shr _a2 x)} |
6 |
5 |
conv ns |
_G -> _a1 == _a2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)