Theorem listfneqd | index | src |

theorem listfneqd (_G: wff) (_l1 _l2: nat):
  $ _G -> _l1 = _l2 $ >
  $ _G -> listfn _l1 = listfn _l2 $;
StepHypRefExpression
1 eqidd
_G -> 0 = 0
2 eqsidd
_G ->
  (\\ a, \\ z, \ f, \. i e. upto (suc (size (Dom f))), if (i = 0) a (f @ (i - 1))) ==
    (\\ a, \\ z, \ f, \. i e. upto (suc (size (Dom f))), if (i = 0) a (f @ (i - 1)))
3 hyp _lh
_G -> _l1 = _l2
4 1, 2, 3 lreceqd
_G ->
  lrec 0 (\\ a, \\ z, \ f, \. i e. upto (suc (size (Dom f))), if (i = 0) a (f @ (i - 1))) _l1 =
    lrec 0 (\\ a, \\ z, \ f, \. i e. upto (suc (size (Dom f))), if (i = 0) a (f @ (i - 1))) _l2
5 4 conv listfn
_G -> listfn _l1 = listfn _l2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)