Theorem snocT | index | src |

theorem snocT (A: set) (a b: nat):
  $ a |> b e. List A <-> a e. List A /\ b e. A $;
StepHypRefExpression
1 bitr
(a |> b e. List A <-> a e. List A /\ b : 0 e. List A) ->
  (a e. List A /\ b : 0 e. List A <-> a e. List A /\ b e. A) ->
  (a |> b e. List A <-> a e. List A /\ b e. A)
2 appendT
a ++ b : 0 e. List A <-> a e. List A /\ b : 0 e. List A
3 2 conv snoc
a |> b e. List A <-> a e. List A /\ b : 0 e. List A
4 1, 3 ax_mp
(a e. List A /\ b : 0 e. List A <-> a e. List A /\ b e. A) -> (a |> b e. List A <-> a e. List A /\ b e. A)
5 elList1
b : 0 e. List A <-> b e. A
6 5 aneq2i
a e. List A /\ b : 0 e. List A <-> a e. List A /\ b e. A
7 4, 6 ax_mp
a |> b e. List A <-> a e. List A /\ b e. A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)