theorem appendT (A: set) (a b: nat):
$ a ++ b e. List A <-> a e. List A /\ b e. List A $;
| Step | Hyp | Ref | Expression |
| 1 |
|
bitr4 |
(a ++ b e. List A <-> all A (a ++ b)) -> (a e. List A /\ b e. List A <-> all A (a ++ b)) -> (a ++ b e. List A <-> a e. List A /\ b e. List A) |
| 2 |
|
elList |
a ++ b e. List A <-> all A (a ++ b) |
| 3 |
1, 2 |
ax_mp |
(a e. List A /\ b e. List A <-> all A (a ++ b)) -> (a ++ b e. List A <-> a e. List A /\ b e. List A) |
| 4 |
|
bitr4 |
(a e. List A /\ b e. List A <-> all A a /\ all A b) -> (all A (a ++ b) <-> all A a /\ all A b) -> (a e. List A /\ b e. List A <-> all A (a ++ b)) |
| 5 |
|
aneq |
(a e. List A <-> all A a) -> (b e. List A <-> all A b) -> (a e. List A /\ b e. List A <-> all A a /\ all A b) |
| 6 |
|
elList |
a e. List A <-> all A a |
| 7 |
5, 6 |
ax_mp |
(b e. List A <-> all A b) -> (a e. List A /\ b e. List A <-> all A a /\ all A b) |
| 8 |
|
elList |
b e. List A <-> all A b |
| 9 |
7, 8 |
ax_mp |
a e. List A /\ b e. List A <-> all A a /\ all A b |
| 10 |
4, 9 |
ax_mp |
(all A (a ++ b) <-> all A a /\ all A b) -> (a e. List A /\ b e. List A <-> all A (a ++ b)) |
| 11 |
|
allappend |
all A (a ++ b) <-> all A a /\ all A b |
| 12 |
10, 11 |
ax_mp |
a e. List A /\ b e. List A <-> all A (a ++ b) |
| 13 |
3, 12 |
ax_mp |
a ++ b e. List A <-> a e. List A /\ b e. List A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)